Channel Coherence Classification with Frame-Shifting in Massive MIMO Systems
نویسندگان
چکیده
This paper considers the uplink pilot overhead in a time division duplexing (TDD) massive Multiple Input Multiple Output (MIMO) mobile systems. A common scenario of conventional massive MIMO systems is a Base Station (BS) serving all user terminals (UTs) in the cell with the same TDD frame format that fits the coherence interval of the worst-case scenario of user mobility (e.g. a moving train with velocity 300 Km/s). Furthermore, the BS have to estimate all the channels each time-slot for all users even for those with long coherence intervals. In fact, within the same cell, sensors or pedestrian with low mobility UTs (e.g. moving 1.38 m/s) share the same short TDD frame and thus are obliged to upload their pilots each time-slot. The channel coherence interval of the pedestrian UTs with a carrier frequency of 1.9 GHz can be as long as 60 times that of the train passenger users. In other words, conventional techniques waste 59-uploaded pilot sequences for channel estimation. In this paper, we are aware of the resources waste due to various coherence intervals among different user mobility. We classify users based on their coherence interval length, and we propose to skip uploading pilots of UTs with large coherence intervals. Then, we shift frames with the same pilot reused sequence toward an empty pilot time-slot. Simulation results had proved that the proposed technique overcome the performance of conventional massive MIMO systems in both energy and spectral efficiency.
منابع مشابه
Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملOptimal Non-coherent Data Detection for Massive SIMO Wireless Systems with General Constellations: A Polynomial Complexity Solution
Massive MIMO systems can greatly increase spectral and energy efficiency over traditional MIMO systems by exploiting large antenna arrays. However, increasing the number of antennas at the base station (BS) makes the uplink noncoherent data detection very challenging in massive MIMO systems. In this paper we consider the joint maximum likelihood (ML) channel estimation and data detection proble...
متن کاملOn massive MIMO performance with semi-orthogonal pilot-assisted channel estimation
With the rapidly increasing demand for high-speed data transmission and a growing number of terminals, massive multiple-input multiple-output (MIMO) has been shown promising to meet the challenges owing to its high spectrum efficiency. Although massive MIMO can efficiently improve the system performance, usage of orthogonal pilots and growing terminals causes large resource consumption especial...
متن کاملEnhancing massive MIMO: A new approach for Uplink training based on heterogeneous coherence time
Massive MIMO is one of the key technologies in future generation networks. Owing to their considerable spectral and energy efficiency gain, massive MIMO systems provide the needed performance to cope with the ever increasing wireless capacity demand. Nevertheless, the number of scheduled users stays limited in massive MIMO systems both in TDD and FDD modes. This is due to the limited time slot ...
متن کاملDesign of Orthogonal Uplink Pilot Sequences for TDD Massive MIMO under Pilot Contamination
—Massive MIMO has been acknowledged as a promising technology to counter the demand for higher data capacity for wireless networks in 2020 and beyond. However, each Base Station (BS) requires good enough knowledge of Channel State Information (CSI) on both the uplink and the downlink as massive MIMO relies on spatial multiplexing. In Time Division Duplex (TDD) massive MIMO systems, this CSI is...
متن کامل